Inhaltsverzeichnis

1	Ladu	ungsträger im Halbleiter 3
	1.1	Debye-Länge
	1.2	Diffusionskonstante
	1.3	Diffusionslänge
	1.4	Fermi–Dirac Verteilung/ Statistik
	1.5	Fermi–Niveau
	1.6	Generation/ Rekombination
	1.7	Internes elektrisches Feld
	1.8	Kontinuitätsgleichung
	1.9	Ladungsträgerkonzentration
	1.10	Lebensdauer
	1.11	Poisson–Gleichung
	1.12	Spezifischer Leitwert
	1.13	Stromdichte
	1.14	Zustandsdichte
2	Halb	leiterdiode ohne äußere Beschaltung 7
	2.1	Diffusionsspannung
	2.2	Elektrisches Feld
	2.3	Elektrisches Potenzial
	2.4	Sperrschichtkapazität
	2.5	Raumladungsdichte
	2.6	Weite der Raumladungszone
	2.7	Verhalten der Energiebänder
3	Halb	leiterdiode mit äußerer Beschaltung 9
•	3.1	Diffusionsstromdichte 9
	3.2	Durchbruch
	0.2	3.2.1 Lawinendurchbruch
		3.2.2 Tunnelstrom
	3.3	Generations-/Rekombinationsstromdichte 10
	3.4	Kleinsignalparameter
	3.5	Ouasi-Ferminiveau 11
	3.6	Reale Diodenkennlinie
	3.7	Schottkydiode
	3.8	Sperrschichtkapazität
	3.9	Weite der Raumladungszone
	0.17	
4	MIS-	Kondenstor 12
	4.1	Austrittsarbeit des Halbleiters
		4.1.1 Austrittsarbeitsdifferenz Metall-Halbleiter
	4.2	Bandverbiegung

	4.3	Einsatzspannung	.3
	4.4	Flachbandspannung	.3
	4.5	Ladung in der Raumladungszone	.3
	4.6	Kapazität	.3
		4.6.1 Gesamtkapazität	.3
		4.6.2 Halbleiterkapazität	.4
		4.6.3 Isolatorkapazität	.4
	4.7	Oberflächenpotential	.4
	4.8	Weite der Raumladungszone 1	.4
5	MOS	S-Transistor	5
	5.1	Einsatzspannung	5
	5.1 5.2	Einsatzspannung 1 Strom-Spannungsbeziehung 1	.5 .5
	5.1 5.2	Einsatzspannung 1 Strom-Spannungsbeziehung 1 5.2.1 n-Kanal 1	5 5 5
	5.1 5.2	Einsatzspannung 1 Strom-Spannungsbeziehung 1 5.2.1 n-Kanal 1 5.2.2 p-Kanal 1	5 5 5 5
	5.1 5.2 5.3	Einsatzspannung 1 Strom-Spannungsbeziehung 1 5.2.1 n-Kanal 1 5.2.2 p-Kanal 1 Substratsteuerfaktor 1	5 5 5 5
	5.15.25.35.4	Einsatzspannung 1 Strom-Spannungsbeziehung 1 5.2.1 n-Kanal 1 5.2.2 p-Kanal 1 Substratsteuerfaktor 1 Unterschwellenstrom 1	5 5 5 6 6

6 Wichtige Konstanten

1 Ladungsträger im Halbleiter

1.1 Debye-Länge

n-Gebiet

$$L_D = \sqrt{\frac{\varepsilon_0 \varepsilon_{HL} kT}{q^2 n_0}}$$
$$\approx \sqrt{\frac{\varepsilon_0 \varepsilon_{HL} kT}{q^2 N_D}}$$

p-Gebiet:

$$L_D = \sqrt{\frac{\varepsilon_0 \varepsilon_{HL} kT}{q^2 p_0}}$$
$$\approx \sqrt{\frac{\varepsilon_0 \varepsilon_{HL} kT}{q^2 N_A}}$$

1.2 Diffusionskonstante

$$D_n = U_T \mu_n$$
$$D_p = U_T \mu_p$$

1.3 Diffusionslänge

$$L_n = \sqrt{D_p \tau_p}$$

 $L_p = \sqrt{D_n \tau_n}$

1.4 Fermi–Dirac Verteilung/ Statistik

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

Boltzmann–Näherung:

$$f_B(E) = \exp\left(-\frac{E-E_F}{kT}\right)$$

1.5 Fermi–Niveau

$$E_{Fi} = \frac{E_C + E_V}{2} + \frac{kT}{2} \ln\left(\frac{N_V}{N_C}\right)$$
$$= \frac{1}{2}E_g + \frac{3}{4}kT \ln\left(\frac{m_h^*}{m_e^*}\right)$$
$$E_F = E_{Fi} + kT \ln\left(\frac{n_0}{n_i}\right)$$
$$= E_{Fi} + kT \ln\left(\frac{n_i}{p_0}\right)$$

1.6 Generation/ Rekombination

Generationsrate:

$$G_{th} = rn_i^2$$

Rekombinationsrate:

$$R = rnp$$

= $r(n_0 + \Delta n)(p_0 + \Delta p)$

Nettokombinationsrate:

$$U = R - G_{th}$$

= $r(np - n_i^2)$
= $r(p_0\Delta n + n_0\Delta p + \Delta n\Delta p)$

1.7 Internes elektrisches Feld

$$E_{\text{int}} = \frac{kt\left(\mu_n \frac{\partial n}{\partial x} - \mu_p \frac{\partial p}{\partial x}\right)}{q\left(p\mu_p + n\mu_n\right)}$$

1.8 Kontinuitätsgleichung

$$\frac{\partial p(x,t)}{\partial t} = -p(x,t)\mu_p \frac{\partial E(x,t)}{\partial x} - \mu_p E(x,t) \frac{\partial p(x,t)}{\partial x} + D_p \frac{\partial^2 p(x,t)}{\partial x^2} + G_{\text{ext}} - \frac{\Delta p(x,t)}{\tau_p}$$
$$= \frac{\partial J_p(x,t)}{q\partial x} + G_p - R_p$$
$$\text{mit: } \Delta p(x,t) = \frac{P_0}{2A} \frac{1}{\sqrt{\pi D_p t}} \exp\left(-\frac{\left(x - \mu_p E_0 t\right)^2}{4D_p t}\right) \exp\left(-\frac{t}{\tau_p}\right)$$

1.9 Ladungsträgerkonzentration

$$n_i^2 = n_0 p_0$$

 $p_0 + N_D^+ = n_0 + N_A^-$

intrinsisch:

$$n_{0} = \int_{E_{C}}^{\infty} N_{e}(E)f(E) dE$$

$$\approx N_{C} \exp\left(-\frac{E_{C} - E_{F}}{kT}\right) \quad \text{mit: } N_{C} = 2\left(\frac{2\pi m_{e}^{*}kT}{h^{2}}\right)^{\frac{3}{2}}$$

$$= n_{i} \exp\left(\frac{E_{F} - E_{Fi}}{kT}\right)$$

$$p_{0} = \int_{-\infty}^{E_{V}} N_{h}(E) \left(1 - f(E)\right) dE$$

$$\approx N_{V} \exp\left(-\frac{E_{F} - E_{V}}{kT}\right) \quad \text{mit: } N_{V} = 2\left(\frac{2\pi m_{h}^{*}kT}{h^{2}}\right)^{\frac{3}{2}}$$

$$= n_{i} \exp\left(-\frac{E_{F} - E_{Fi}}{kT}\right)$$

$$n_{i} = \sqrt{N_{C}N_{V}} \exp\left(-\frac{E_{g}}{2kT}\right)$$

$$\sim T^{\frac{3}{2}} \exp\left(-\frac{E_{g}}{2kT}\right)$$

dotiert:

$$n_{0} = n_{i} \exp\left(\frac{E_{F} - E_{Fi}}{kT}\right)$$
$$= N_{C} \exp\left(\frac{E_{Fi} - E_{C}}{kT}\right)$$
$$p_{0} = n_{i} \exp\left(-\frac{E_{F} - E_{Fi}}{kT}\right)$$
$$= N_{V} \exp\left(\frac{E_{V} - E_{Fi}}{kT}\right)$$

p-Halbleiter:

$$p_0 = \frac{N_A - N_D + \sqrt{(N_a - N_D)^2 + 4n_i^2}}{2}$$

$$\approx N_A \quad \text{für } N_A >> N_D \land N_A >> n_i$$

_

n-Halbleiter:

$$n_0 =$$

 $\approx N_D \quad \text{für } N_D >> N_A \land N_D >> n_i$

1.10 Lebensdauer

$$\tau = \frac{1}{rn_0}$$
$$\tau = \frac{1}{rp_0}$$

1.11 Poisson–Gleichung

$$\frac{dE}{dx} = -\frac{d^2\phi}{dx^2}$$

= $\frac{\rho(x)}{\varepsilon_0\varepsilon_{HL}}$
mit: $\rho(x,t) = q(p(x) + N_D^+ - n(x) - N_A^-)$

1.12 Spezifischer Leitwert

$$\sigma = \frac{1}{\rho}$$
$$= q(\mu_p p + \mu_n n)$$

1.13 Stromdichte

Stromdichte im elektrischen Feld:

$$\vec{J} = q\left(p\vec{v}_p - n\vec{v}_n\right)$$
$$= \underbrace{q\left(p\mu_p + n\mu_n\right)}_{\sigma}\vec{E}$$

Diffusionsstromdichte:

$$J(x,t) = q \left(D_n \frac{\partial n(x,t)}{\partial x} - D_p \frac{\partial p(x,t)}{\partial x} \right)$$

mit: $D_{n,p} = \frac{kT}{q} \mu_{n,p} = U_T \mu_{n,p}$

Gesamtstromdichte:

$$\vec{J} = q \left(p \mu_p + n \mu_n \right) \vec{E} + q \left(D_n \operatorname{grad} n - D_p \operatorname{grad} p \right)$$

1.14 Zustandsdichte

$$N_{e}(E) = \frac{4\pi (2m_{e}^{*})^{\frac{3}{2}}}{h^{3}} \sqrt{E - E_{C}}$$
$$N_{h}(E) = \frac{4\pi (2m_{h}^{*})^{\frac{3}{2}}}{h^{3}} \sqrt{E_{v} - E}$$

2 Halbleiterdiode ohne äußere Beschaltung

2.1 Diffusionsspannung

$$U_{\text{Diff}} = \underbrace{\frac{kT}{q}}_{U_T} \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

2.2 Elektrisches Feld

$$-x_p \le x \le 0: \quad E(x) = -\frac{qN_A}{\varepsilon_{HL}\varepsilon_0} \left(x + x_p\right)$$
$$0 \le x \le x_n: \quad E(x) = \frac{qN_D}{\varepsilon_{HL}\varepsilon_0} \left(x - x_n\right)$$
sonst:
$$E(x) = 0$$
$$|E_{\max}| = \left|2 \cdot \frac{U_{\text{Diff}} - U}{w_{RL}(U)}\right|$$

2.3 Elektrisches Potenzial

$$-x_p \le x \le 0: \quad \phi(x) = \frac{qN_A}{\varepsilon_{HL}\varepsilon_0} \frac{\left(x + x_p\right)^2}{2}$$
$$0 \le x \le x_n: \quad \phi(x) = U_{\text{Diff}} - \frac{qN_D}{\varepsilon_{HL}\varepsilon_0} \frac{\left(x - x_n\right)^2}{2}$$
$$x \le -x_p: \quad \phi(x) = 0$$
$$x \ge x_n: \quad \phi(x) = U_{\text{Diff}}$$

2.4 Sperrschichtkapazität

$$C_{S} = \frac{\varepsilon_{0}\varepsilon_{HL}}{w_{RL}}A$$
$$= A\sqrt{\frac{q\varepsilon_{0}\varepsilon_{HL}}{2(U_{\text{Diff}} - U)} \cdot \frac{N_{A}N_{D}}{N_{A} + N_{D}}}$$

2.5 Raumladungsdichte

$$-x_p \le x \le 0: \quad \rho(x) = -qN_A^-$$

$$0 \le x \le x_n: \quad \rho(x) = qN_D^+$$

sonst:
$$\rho(x) = 0$$

$$\rho(x,t) = q(p(x) + N_D^+ - n(x) - N_A^-)$$

2.6 Weite der Raumladungszone

$$\frac{x_n}{x_p} = \frac{N_A}{N_D}$$
$$w_{RL} = x_n + x_p$$
$$= \sqrt{\frac{2\varepsilon_0 \varepsilon_{HL} U_{\text{Diff}}}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)$$

n-Gebiet:

$$x_n = \sqrt{\frac{2\varepsilon_0\varepsilon_{HL}U_{\text{Diff}}}{qN_D}} \cdot \frac{N_A}{N_A + N_D}$$
$$= L_{D,n}\sqrt{\frac{2qU_{\text{Diff}}}{kT}} \cdot \frac{N_A}{N_A + N_D}$$
$$= w_{RL}\frac{N_A}{N_A + N_D}$$

p-Gebiet:

$$x_{p} = \sqrt{\frac{2\varepsilon_{0}\varepsilon_{HL}U_{\text{Diff}}}{qN_{A}}} \cdot \frac{N_{D}}{N_{A} + N_{D}}$$
$$= L_{D,p}\sqrt{\frac{2qU_{\text{Diff}}}{kT}} \cdot \frac{N_{D}}{N_{A} + N_{D}}$$
$$= w_{RL}\frac{N_{D}}{N_{A} + N_{D}}$$

n⁺p–Übergang:

$$w_{RL} = \sqrt{\frac{2\varepsilon_o \varepsilon_{HL} U_{\text{Diff}}}{q N_D}}$$

p⁺n–Übergang:

$$w_{RL} = \sqrt{\frac{2\varepsilon_o \varepsilon_{HL} U_{\text{Diff}}}{qN_A}}$$

2.7 Verhalten der Energiebänder

Bandaufwölbung:

$$\Delta E = q \left(U_{\text{Diff}} - U \right)$$

Energie aus Potenzial:

$$E = -q\phi$$

Verlauf des Leitungsbandes in der Raumladungszone:

$$-x_p \le x \le 0: \quad E_C(x) = E_C(-\infty) - \frac{q^2 N_A}{\varepsilon_{HL} \varepsilon_0} \frac{\left(x + x_p\right)^2}{2}$$
$$0 \le x \le x_n: \quad E_C(x) = E_C(-\infty) - q U_{\text{Diff}} + \frac{q^2 N_D}{\varepsilon_{HL} \varepsilon_0} \frac{\left(x - x_n\right)^2}{2}$$

Verlauf des Valenzbandes in der Raumladungszone:

$$E_V(x) = E_C(x) - E_g$$

3 Halbleiterdiode mit äußerer Beschaltung

3.1 Diffusionsstromdichte

$$J = J_S \left(\exp\left(\frac{qU}{kT}\right) - 1 \right)$$

3.2 Durchbruch

3.2.1 Lawinendurchbruch

$$U_B = 60 \,\mathrm{V} \left(\frac{E_{\rm g}}{1.1 \,\mathrm{eV}}\right)^{\frac{3}{2}} \left(\frac{N}{10^{16} \,\mathrm{cm}^{-3}}\right)^{-\frac{3}{4}}$$

N ist die Ladungsträgerkonzentration im schwächer dotierten Gebiet.

3.2.2 Tunnelstrom

$$I_T = \frac{\sqrt{2m^*}q^3 EU}{4\pi^2\hbar^2 E_g^{\frac{1}{2}}} \exp\left(-\frac{4\sqrt{2m^*}E_g^{\frac{3}{2}}}{3qE\hbar}\right)$$

Sperrsättigungsstromdichte

$$J_S = q \left(\frac{D_n n_{p,0}}{L_n} + \frac{D_p p_{n,0}}{L_p} \right)$$
$$= q n_i^2 \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right)$$
$$= q n_i^2 \left(\frac{L_n}{\tau_n N_A} + \frac{L_p}{\tau_p N_D} \right)$$

3.3 Generations-/Rekombinationsstromdichte

$$J_{G/R} = \frac{qn_i w_{RL}}{2\tau_{G/R}} \left(\exp\left(\frac{qU}{2kT}\right) - 1 \right)$$
$$= J_{G/R,0} \left(\exp\left(\frac{qU}{2kT}\right) - 1 \right)$$

Generationsstromdichte

$$J_G = -\frac{qn_iw_{RL}}{2\tau_G}$$

Rekombinationsstromdichte

$$J_R = \frac{qn_iw_{RL}}{2\tau_R}\exp\left(\frac{qU}{2kT}\right)$$

3.4 Kleinsignalparameter

 U_0 ist der Gleichanteil der Spannung; Die Gleichungen gelten nur für niedrige Frequenzen

$$G_D = \frac{q}{kT} \left(\frac{qD_p p_{n,0}}{L_p} + \frac{qD_n n_{p,0}}{L_n} \right) \exp\left(\frac{qU_0}{kT}\right)$$
$$C_D = \frac{q}{kT} \left(\frac{qL_p p_{n,0}}{2} + \frac{qL_n n_{p,0}}{2} \right) \exp\left(\frac{qU_0}{kT}\right)$$

3.5 Quasi-Ferminiveau

$$n = n_i \exp\left(\frac{E_{Fn} - F_{Fi}}{kT}\right)$$
$$p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right)$$
$$n \cdot p = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right)$$
$$= n_i^2 \exp\left(\frac{qU}{kT}\right)$$

Minoritätsträgerdichte:

$$n = \frac{n_i^2}{p} \exp\left(\frac{qU}{kT}\right)$$
$$= n_{p,0} \exp\left(\frac{qU}{kT}\right)$$
$$p = \frac{n_i^2}{n} \exp\left(\frac{qU}{kT}\right)$$
$$= p_{n,0} \exp\left(\frac{qU}{kT}\right)$$

3.6 Reale Diodenkennlinie

siehe auch Abb.: Dioden-49

$$I = I_S \left(\exp\left(\frac{q\left(U_I R_S\right)}{kT}\right) - 1 \right) + I_{G/R,0} \left(\exp\left(\frac{q\left(U_I R_S\right)}{2kT}\right) - 1 \right) + \frac{U - IR_s}{R_p} - I_{ph}$$

3.7 Schottkydiode

$$J = A^*T^2 \exp\left(-\frac{q\phi_B}{kT}\right) \left(\exp\left(\frac{qU}{kT}\right) - 1\right)$$

3.8 Sperrschichtkapazität

$$C_{S} = \frac{\varepsilon_{0}\varepsilon_{HL}}{w_{RL}}A$$
$$= A \sqrt{\frac{q\varepsilon_{0}\varepsilon_{HL}}{2(U_{\text{Diff}} - U)} \cdot \frac{N_{A}N_{D}}{N_{A} + N_{D}}}$$

n⁺p–Übergang:

$$C_S = A \sqrt{\frac{q\varepsilon_0 \varepsilon_{HL} N_A}{2 (U_{\text{Diff}} - U)}}$$

p⁺n–Übergang:

$$C_{S} = A \sqrt{\frac{q\varepsilon_{0}\varepsilon_{HL}N_{D}}{2(U_{\text{Diff}} - U)}}$$

Diagramm $\frac{1}{C_s^2}$ über U:

• bei $\frac{1}{C_s^2} = 0$ ist $U = U_{\text{Diff}}$

3.9 Weite der Raumladungszone

$$w_{RL} = x_n(U) + x_p(U)$$

= $\sqrt{\frac{2\varepsilon_0 \varepsilon_{HL} (U_{\text{Diff}} - U)}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)}$

4 MIS-Kondenstor

4.1 Austrittsarbeit des Halbleiters

$$q\phi_{HL} = q\chi_{HL} + \frac{E_g}{2} + q\phi_B$$

4.1.1 Austrittsarbeitsdifferenz Metall-Halbleiter

$$q\phi_{MHL} = q(\phi_m - \phi_{HL})$$

4.2 Bandverbiegung

$$\phi_B = \frac{E_{Fi} - E_F}{q}$$

n-Halbleiter:

$$\phi_B = U_T \ln\left(\frac{n_i}{N_D}\right)$$

p-Halbleiter:

$$\phi_B = U_T \ln\left(\frac{N_A}{n_i}\right)$$

4.3 Einsatzspannung

$$U_{Th} = U_{FB} + 2\phi_B - \frac{Q_{HL}}{C_{IS}}$$

4.4 Flachbandspannung

$$U_{FB} = \phi_{MHL} - \frac{Q_{IS}}{C_{IS}}$$

4.5 Ladung in der Raumladungszone

n-Halbleiter:

$$Q_{HL} = \sqrt{4\varepsilon_0 \varepsilon_{HL} q N_D |\phi_B|}$$

p-Halbleiter:

$$Q_{HL} = -\sqrt{4\varepsilon_0\varepsilon_{HL}qN_A|\phi_B|}$$

4.6 Kapazität

4.6.1 Gesamtkapazität

Verarmung/ schwache Inversion:

$$C = \frac{C_{IS}C_{HL}}{C_{IS} + C_{HL}}$$

Starke Inversion bei niedriger Frequenz

$$C = C_{IS}$$

Starke Inversion bei hoher Frequenz

$$C_{HL} = \frac{\varepsilon_0 \varepsilon_{HL}}{w_{\text{RL,max}}}$$
$$= \sqrt{\frac{q \varepsilon_0 \varepsilon_{HL} N}{4 |\phi_B|}}$$

4.6.2 Halbleiterkapazität

Verarmung/ schwache Inversion:

$$C_{HL} = \frac{\varepsilon_0 \varepsilon_{HL}}{w_{RL}}$$
$$= \sqrt{\frac{q\varepsilon_0 \varepsilon_{HL} N}{2|\phi_S|}}$$

Starke Inversion:

$$C_{HL} \rightarrow \infty$$

4.6.3 Isolatorkapazität

$$C_{IS} = \frac{\varepsilon_0 \varepsilon_{is}}{x_{IS}} A$$

4.7 Oberflächenpotential

$$\phi_S = \frac{E_{Fi}(\infty) - E_{Fi}(0)}{q}$$

4.8 Weite der Raumladungszone

Die maximale Weite der Raumladungszone liegt bei $|\phi_s| = |2\phi_B|$ vor.

n-Halbleiter:

$$w_{RL} = \sqrt{-\frac{2\varepsilon_0\varepsilon_{HL}}{qN_D}\phi_S}$$
 für: $0 \ge \phi_s \ge -2\phi_B$

p-Halbleiter:

$$w_{RL} = \sqrt{\frac{2\varepsilon_0\varepsilon_{HL}}{qN_A}\phi_S}$$
 für: $0 \le \phi_s \le -2\phi_B$

5 MOS-Transistor

5.1 Einsatzspannung

$$U_{Th} = U_{FB} + 2\phi_B - \frac{Q_{HL}}{C_{IS}}$$

5.2 Strom-Spannungsbeziehung

5.2.1 n-Kanal

Linearer Bereich:

$$I_D = \beta (U_G - U_{Th}) U_D$$
 für: $0 \le U_D << U_G - U_{Th}$

Triodenbereich:

$$I_D = \beta \left((U_G - U_{Th}) U_D - \frac{U_D^2}{2} \right) \qquad \text{für: } 0 \le U_D \le U_G - U_{Th}$$

Sättigungsbereich:

$$I_D = \frac{\beta}{2} (U_G - U_{Th})^2$$
 für: $0 \le U_G - U_{Th} \le U_D$

Transkonduktanz:

$$\beta = \mu_n C_{IS} \frac{W}{L}$$

5.2.2 p-Kanal

Linearer Bereich:

$$I_D = -\beta (U_G - U_{Th}) U_D$$
 für: $0 \le U_D << U_G - U_{Th}$

Triodenbereich:

$$I_D = -\beta \left((U_G - U_{Th}) U_D - \frac{U_D^2}{2} \right) \qquad \text{für: } 0 \le U_D \le U_G - U_{Th}$$

Sättigungsbereich:

$$I_D = -\frac{\beta}{2} (U_G - U_{Th})^2$$
 für: $0 \le U_G - U_{Th} \le U_D$

Transkonduktanz:

$$\beta = \mu_p C_{IS} \frac{W}{L}$$

5.3 Substratsteuerfaktor

$$U_{Th} = U_{FB} + 2\phi_B + \gamma \sqrt{|2\phi_B - U_B|}$$

n-Kanal:

$$\gamma = \sqrt{\frac{2\varepsilon_0\varepsilon_{HL}qN_A}{C_{IS}}}$$
$$Q_{HL} = -\sqrt{2\varepsilon_0\varepsilon_{HL}qN_A}|2\phi_B - U_B|}$$

p-Kanal:

$$\gamma = -\sqrt{\frac{2\varepsilon_0\varepsilon_{HL}qN_D}{C_{IS}}}$$
$$Q_{HL} = \sqrt{2\varepsilon_0\varepsilon_{HL}qN_D |2\phi_B - U_B|}$$

5.4 Unterschwellenstrom

$$I = \frac{\beta x_C q U_T n_i^2}{C_{IS} N_A} \exp\left(\frac{\phi_S}{U_T}\right) \left(1 - \exp\left(-\frac{U_D}{U_T}\right)\right)$$

6 Wichtige Konstanten

$$e = 1,60217733 \cdot 10^{-19} \text{ C}$$

$$m_e = 9,1093897 \cdot 10^{-31} \text{ kg}$$

$$\frac{e}{m_e} = 1,75881962 \cdot 10^{11} \text{ C kg}^{-1}$$

$$k = 1,380658 \cdot 10^{-23} \text{ J K}^{-1}$$

$$kT \stackrel{300 \text{ K}}{=} 4,141974 \cdot 10^{-21} \text{ J}$$

$$U_T \stackrel{300 \text{ K}}{=} 25,852157 \text{ mV}$$